
Abstract
Due to rapid growth in the medical cannabis industry, demand is increasing for analysis of residual solvents in cannabis concen-
trates in order to protect consumer safety. This application note details a simple, fast test for common residual solvents using full 
evaporation technique headspace GC-FID and an Rxi®-624Sil MS column. 

Introduction
As the popularity of cannabis concentrates increases, consumer safety concerns are resulting in the establishment of new regula-
tions to control the level of residual solvents in commercial cannabis concentrates. The State of Colorado, for example, published 
allowable concentrations of certain residual solvents in Rule R 712. This is because, although cannabis concentrates can be produced 
in numerous ways, one of the most common means of extracting therapeutic compounds, like tetrahydrocannabinol (THC), can-
nabidiol (CBD), and terpenes, from cannabis is through extraction with an organic solvent, such as butane. After the cannabinoids 
and terpenes are extracted from the plant material, the organic solvent is allowed to evaporate and then is purged off using heat 
and/or vacuum. These extraction solvents can be difficult to purge completely, so the finished product needs to be tested to ensure 
that residual solvents are only present at or below safe levels. For consumer safety, especially with medicinal products, accurate and 
comprehensive analysis of residual solvents is necessary for concentrates and extracts.

Since residual solvents are extremely volatile, they cannot be analyzed by HPLC and lend themselves nicely to GC analysis. One 
of the most common and reliable ways to quantify residual solvents is through headspace gas chromatography–flame ionization 
detection (GC-FID). Headspace injection works by driving volatile compounds of interest from the sample into a gas phase in 
the headspace of the vial above the sample. An aliquot is then withdrawn from the headspace of the vial and analyzed by GC-FID 
in order to determine the volatile components of the sample. One approach for headspace GC-FID that is particularly useful for 
analyzing cannabis concentrates is the full evaporation technique (FET). FET sample preparation involves the use of a very small 
sample amount (e.g., 20–50 mg), which effectively creates a single-phase gas system in the headspace vial at equilibrium [1]. FET is 
ideal for difficult and varied matrices like cannabis concentrates because it eliminates matrix interferences that can cause inaccurate 
quantification, and it also has the advantages of little to no manual sample handling and a very small sample size. Additionally, high 
sensitivity can be achieved through the creation of a single-phase system in the headspace vial. Figure 1 illustrates the basic principle 
of headspace GC using the full evaporation technique.

The work described here demonstrates the viability of FET headspace injection and GC-FID analysis of residual solvents in canna-
bis concentrates. The method is simple to implement, quick to run, and does not require expensive dynamic headspace equipment 
or mass spectrometric detectors. While the methodology presented here is suitable for residual solvents in cannabis concentrates, 
it is not applicable for finished tinctures in alcohol. Finished alcohol tinctures contain large amounts of alcohol which will severely 
interfere with quantification of other residual solvents in the sample. Therefore, an alternate approach is required for alcohol tinc-
tures. This technique also may be applicable for oil or glycerin tinctures; however, it has not been evaluated for that use.
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Experimental
Headspace and GC Method Optimization
An Rxi®-624Sil MS column was selected for this 
work as it is designed specifically for volatiles anal-
ysis and is widely used for the analysis of residual 
solvents in pharmaceutical products. Final FET 
headspace injector and GC-FID operating condi-
tions are presented in Figure 3. Initially, modeled 
conditions for analyzing the specific compounds 
of interest were generated using Restek’s EZGC™ 
chromatogram modeler. The method from the 
modeler was then optimized to account for head-
space analysis employing a headspace instrument 
with a transfer line.

The following parameters were optimized for this 
method:

•	 Linear velocity: Linear velocity was increased 
to 80 cm/sec to allow for fast sample transfer 
through the headspace instrument transfer line. 
Fast sample transfer minimizes band broaden-
ing, which maximizes efficiency, resolution, and 
sensitivity. The original GC oven program gen-
erated by the EZGC™ chromatogram modeler 
was translated using the EZGC™ method trans-
lator to give a new oven program optimized 
for the new carrier flow. Method translation is 
required when changing flow rates in order to 
keep elution temperatures constant. Changes in 
elution temperatures between the original and the translated method will sometimes result in drastically different separations or 
even coelutions, especially on highly selective phases like the Rxi®-624Sil MS column.

•	 GC inlet liner choice: The liner used for this work was a 1 mm straight Sky® inlet liner (cat.# 23333.1). The use of a small internal 
diameter liner minimizes band broadening by reducing the overall volume of the inlet, again resulting in higher efficiency, resolu-
tion, and sensitivity.

•	 Split ratio: A split ratio of 10:1 was used for this work. Although maximum sensitivity is required due to very low expected levels 
of target analytes, using a split ratio of at least 10:1 ensures high sample velocity through the GC inlet, which minimizes band 
broadening, increasing resolution without compromising sensitivity. Sharper peaks are taller peaks, so any loss in sensitivity is 
mitigated through an increase in signal-to-noise ratio.

•	 Equilibration temperature: Samples were equilibrated at 140 °C to encourage complete melting of waxy concentrates. By melting 
the extracts, the ratio of surface area to volume is maximized, ensuring 100% transfer of the analytes of interest into the head-
space. The use of a larger sample size will compromise this ratio; therefore, sample sizes should be kept as small as possible to 
ensure accurate quantification (20 mg is recommended for this application). Representative concentrates are shown in Figure 
2. Small samples (20–25 mg) of each concentrate type were placed in a capped headspace vial and incubated for 30 minutes at 
140 °C. All concentrates melted completely at the 140 °C incubation temperature, forming a thin film at the bottom of the 
headspace vial.

•	 Equilibration time: The equilibration time for this method was 30 minutes. This allows enough time for waxy concentrates to 
melt completely and ensures equilibrium is reached in the headspace vial. Equilibrium is required for accurate and reproducible 
quantification.

•	 Oven program: The oven program was optimized for speed for this application. In samples that contain terpenes, it is recom-
mended that the oven ramp be extended to 320 °C and the isothermal hold time be extended to 5 minutes in order to ensure 
complete elution of any terpenes that may be present in the sample.

Figure 1: Setup and Basic Principle of FET Headspace Injection 
Coupled With GC-FID Analysis
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Figure 2: Cannabis concentrate samples are solid before FET 
incubation (left) and then melt completely into a thin liquid layer 
after a 30-minute incubation at 140 °C (right).

Table I: Commodity and Calibration Standard Curve 
Equivalency Levels

Calibration Curve Preparation
When preparing standards for FET headspace 
GC-FID, it is necessary to calculate the total mass 
of analyte that will be present in a representa-
tive sample, since the equilibrium state results 
in a single-phase system. For example, a 20 mg 
sample containing a residual solvent at 50 ppm 
contains 1 µg of that residual solvent. Therefore, 
the 50 ppm point in the calibration curve should 
contain 1 µg of each compound of interest. Since 
FET headspace GC-FID depends on the establish-
ment of a single phase system, very small volumes 
are required for standards. The volume used for 
standards in this application was 10 µL, which was 
placed directly into a capped headspace vial by 
injecting it through the vial septum with a clean 
syringe. Table I presents the 7-point calibration 
curve standards and their corresponding concen-
trations in commodity samples.

Standards were prepared in dimethyl sulfoxide 
(DMSO), which is a less-volatile, later-eluting 
solvent that does not interfere with the residual 
solvents of interest. Because FET establishes a 
single-phase system in the headspace vial without 
partitioning, it is not necessary to matrix-match 
standards and samples, which simplifies standard 
preparation for varied matrices.

The calibration curve was prepared by first mak-
ing a 1,000 µg/mL stock solution for dilution. The 
stock solution was prepared as follows:

•	 Prepare a 5,000 µg/mL stock solution of butane 
by bubbling butane standard through DMSO on 
a balance in a fume hood. The butane used for 
this work was a mixture of butane and isobu-
tane.

•	 Prepare a 1,000 µg/mL stock solution by add-
ing 2 mL of 5,000 µg/mL butane stock to a 10 
mL volumetric flask, adding ~4 mL DMSO, and 
then volumetrically adding each neat solvent to 
the flask using a syringe. Volumes required for 
the 1,000 µg/mL stock standard were adjusted to 
account for the density of each solvent as shown 
in Table II.

•	 After the addition of neat solvents, fill the flask 
to the line with DMSO and mix by gently invert-
ing the flask three times and rotating to swirl the 
contents between inversions. 

Concentration in 
Commodity (ppm)

Amount in 20 mg 
Sample (µg)

Concentration in 10 µL 
Standard (µg/mL)

500 10 1,000

250 5 500

100 2 200

50 1 100

25 0.5 50

10 0.2 20

5 0.1 10

Crumble - Melting point = ~115 °C

Shatter - Melting point = 108 °C

Taffy - Melting point = 102 °C

Photos and melting point data courtesy Cal-Green Solutions
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Table II: Density-Adjusted Volumes Used to Prepare 10 mL of the 1,000 µg/mL Stock Solution

Table III: Calibration Curve Preparation

The 1,000 µg/mL stock solution prepared using Table II was used as the highest calibration standard. All other calibration points 
were prepared in 5 mL volumetric flasks with separate dilutions of the 1,000 µg/mL stock solution. Serial dilution was not used for 
this work in order to minimize time-consuming syringe rinsing during calibration curve preparation. Because the compounds used 
here are volatile, work needed to be completed as quickly as possible to prepare the calibration standards. In addition, volumetric 
flasks were kept capped to minimize evaporative loss. Table III details the preparation of the calibration curve standards.

After preparation, all calibration standards were divided into 2.5 mL aliquots and stored in the refrigerator at 5 °C. Since DMSO 
freezes under refrigeration, calibration standards were allowed to thaw completely prior to use. By aliquoting the calibration stan-
dards into separate vials, freeze/thaw cycles were reduced for the entire volume of the calibration solution, allowing for longer stor-
age life of calibration and stock solutions. If desired, calibration standards may be split into aliquots smaller than 2.5 mL to further 
reduce freeze/thaw cycles. This can be accomplished by pipetting aliquots into gas-tight vials using a glass pipet and immediately 
capping the vials.

Results and Discussion
Good chromatographic peak shape, separation, and sensitivity were achieved for all analytes of interest. Figure 3 shows the 25 ppm 
calibration standard. Use of the Restek® Rxi®-624Sil MS column allowed for the separation of the wide variety of solvents that may be 
present in cannabis concentrates in a short analysis time, while retaining and resolving highly volatile butane isomers. This column 
was selected for the FET headspace GC-FID method because it was designed specifically for volatiles analysis and is widely used 
for the analysis of residual solvents in pharmaceutical products. Additionally, the column’s unique selectivity also resolves dozens of 
terpenes [2]. This allows cannabis terpene profiling to be done without changing columns or injection technique, which decreases 
downtime between methods and improves lab productivity. 

Compound Density (g/mL) Volume Required (µL)

Butane measured gravimetrically 2,000

Chloroform 1.48 6.7 

Isobutane NA 2,000

Acetone 0.79 12.6

Methanol 0.79 12.6

Ethanol 0.79 12.7

IPA 0.79 12.7

Benzene 0.88 11.4

Toluene 0.87 11.5

Pentane 0.63 16.0

Hexane 0.65 15.3

Heptane 0.68 14.7

Calibration Level
(ppm in Commodity)

Volume of 1,000 µg/mL
Stock Solution (mL) Final Volume (mL) Final Calibration Standard 

Concentration (µg/mL)

500 5 5 1,000

250 2.5 5 500

100 1 5 200

50 0.5 5 100

25 0.25 5 50

10 0.1 5 20

5 0.05 5 10
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In addition to using a highly efficient, selective Rxi®-624Sil MS column, it is critical to optimize several GC parameters for head-
space analyses in order to prevent band broadening. Early-eluting compounds such as isobutane and butane do not focus on the 
head of the analytical column, so band broadening through the headspace system and injection port can reduce efficiency, severely 
impacting sensitivity and resolution for these compounds (Figure 4). As detailed in the Experimental section, band broadening was 
controlled by using a fast linear velocity, narrow bore inlet liner, and a 10:1 split ratio. This approach speeds up sample transfer and 
ensures good chromatographic peak shape and response.

Figure 3: Calibration standard corresponding to a 20 mg cannabis concentrate sample containing 25 ppm of 
residual solvents. Good chromatographic separation and sensitivity were achieved for common residual solvents.
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		  Peaks	 tR (min)
	 1.	 Isobutane	 0.903
	 2.	 Butane	 0.989
	 3.	 Methanol	 1.110
	 4.	 Pentane	 1.497
	 5.	 Ethanol	 1.542
	 6.	 Acetone	 1.787
	 7.	 Isopropanol	 1.888
	 8.	 n-Hexane	 2.405
	 9.	 Chloroform	 2.957
	 10.	 Benzene	 3.208
	 11.	 Heptane	 3.360
	 12.	 Toluene	 4.131

Column	 Rxi®-624Sil MS, 30 m, 0.25 mm ID, 1.40 µm (cat.# 13868)
Sample	 Residual solvent mix
Diluent:	 Dimethyl sulfoxide (DMSO)
Conc.:	 25 ppm (For the HS-FET technique, 10 µL of a 50 µg/mL standard was 

placed into a 20 mL headspace vial to represent a 25 ppm sample 
concentration, assuming a 20 mg sample weight.)

Injection	 headspace-loop split (split ratio 10:1)
Liner:	 Sky® 1.0 mm ID straight inlet liner (cat.# 23333.1)
Headspace-Loop	
Inj. Port Temp.:	 250 °C
Instrument:	 Tekmar HT3
Inj. Time:	 1.0 min
Transfer Line 
   Temp.:	 160 °C
Valve Oven 
   Temp.:	 160 °C
Needle Temp.:	 140 °C
Sample Temp.:	 140 °C
Platen temp 
   equil. time:	 1.0 min
Sample Equil. 
   Time:	 30.0 min

Vial Pressure:	 20 psi
Pressurize Time:	 5.0 min
Loop Pressure:	 15 psi
Loop Fill Time:	 2.0 min
Oven
Oven Temp.:	 35 °C (hold 1.5 min) to 300 °C at 30 °C/min (hold 2.0 min)
Carrier Gas	 He, constant flow
Linear Velocity:	 80 cm/sec
Detector	 FID @ 320 °C
Make-up Gas 
   Flow Rate:	 45 mL/min
Make-up Gas 
   Type:	 N2
Hydrogen flow:	 40 mL/min
Air flow:	 450 mL/min
Data Rate:	 20 Hz
Instrument	 Agilent/HP6890 GC
Notes	 The butane used for standard preparation was a mixture of butane and 

isobutane in an unknown ratio. The concentrations should be considered 
approximate, but do not exceed 50 ppm for any component.
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Figure 4: Lower efficiency (N) due to band broadening during headspace sample introduction can reduce both 
resolution and sensitivity (modeled chromatogram).

Analysis of calibration standards resulted in good sensitivity and linear responses for all analytes of interest. Table IV shows the 
signal-to-noise ratios at 10 ppm and 50 ppm (current Colorado regulatory cutoff values), as well as the correlation coefficients 
(r values) and coefficients of determination (r2 values) for all analytes. All compounds exhibited adequate signal-to-noise ratios 
(> 10:1) at their respective Colorado state regulatory limits. Signal-to-noise ratios were > 10:1 for all compounds at 10 ppm, with 
the exception of isobutane. The Colorado cutoff for isobutane was 50 ppm at the time of this study; however, prior to publication, 
Colorado changed the limits and solvents of interest for residual solvent testing. This method will be suitable for the new regulations 
as well as the older ones.

Figure 5 shows plots of the most linear (heptane) and least linear (isobutane) calibration curves. All calibration curves exhibited 
acceptable linearity without the use of an internal standard. The use of an internal standard may improve linearity and reproduc-
ibility, if desired. 

A.	Proper peak shape and good efficiency provide 
good separations.

B.	Band broadening due to HS injection results in 
lower efficiency and partial coelution.
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Figure 5: Representative Calibration Curves from 5–500 ppm for Heptane and Isobutane
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Table IV: Using full evaporation technique sample introduction for headspace GC-FID resulted in good sensitivity 
and linearity for all residual solvents as shown by peak response and correlation data for the calibration standards. 

Compound S:N 10 ppm S:N 50 ppm r r2

Isobutane 5.30 30.7 0.996 0.992

Butane 18.8 119 0.997 0.994

Methanol 48.1 189 0.999 0.999

Pentane 19.0 50.0 0.998 0.995

Ethanol 45.2 88.1 0.999 0.998

Acetone 49.9 97.0 0.999 0.999

Isopropanol 56.4 107 0.998 0.996

Hexane 45.6 109 0.999 0.998

Chloroform 11.5 22.5 0.999 0.998

Benzene 150 293 0.999 0.998

Heptane 88.4 193 1.00 1.00

Toluene 166 317 0.999 0.998

*Signal-to-noise ratios were calculated using Chemstation® software. Noise ranges were set at 0.2–0.6 minutes and 2.1–2.3 minutes.
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Conclusion
By combining a selective Rxi®-624Sil MS GC column with the FET headspace GC-FID technique, excellent sensitivity and linearity 
were achieved for residual solvent compounds applicable to cannabis concentrates. The use of FET headspace GC-FID should allow 
quantification without the use of matrix-matched standards by creating a single non-partitioning phase system in the headspace 
vial. This technique also has the added benefit of needing very little sample and is applicable for the analysis of other volatile com-
pounds, such as terpenes, in cannabis products. 
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